
Python	vs	Big	Data
"Python?? Why Python?"
https://www.youtube.com/watch?v=VrutixOEtOM

massimo.marchi@unimi.it

mailto:massimo.marchi@unimi.it

What	Is	Python
• Python is a high-level, interpreted and general-purpose

dynamic programming language that focuses on code
readability.
• The Python is widely used and have a large and active

programmer community.
• It has a comprehensive and large standard library that

has automatic memory management and dynamic
features.
• It easily extensible by other programming language
• https://jakevdp.github.io/WhirlwindTourOfPython/
• https://www.python.org/
• https://en.wikipedia.org/wiki/Python_(programming_language)

Why	Python...	some	step	back...
It's a dirty job, but someone have to do it

• People needs to elaborate data in order to extract results

data Transformation

data

program

result

Digitalization Rendering

computer

result

Easy eproducible on different set of data

Data	coding
• Digital computers can handle only binary signals: sequences of

0 and 1 (bit = binary digit)
• In order to transform data by digital computers, it needs to

digitalize data, i.e. transform real samples (images, sound,
etc.) into sequences of bits, packed for technological and
hostorical reasons into group of 8 bit, called bytes.

• The meaning of a sequence is given by the format used to
code and interpreter the sequence, eg. ASCII, bitmap, mp3.

0100.0010
0011.1100
0100.0010 ASCII codes 66 60 66 Characters "B<B"

BITMAP 3x8

https://en.wikipedia.org/wiki/ASCII https://en.wikipedia.org/wiki/BMP_file_format

Computers	at	hardware	level
A very schematic and simplified draft of a digital computer

CPU

RAM

IOKeyboard

Printer

Network
.....

program

program

data

data

Executor

Working area

Storing area
Process

Coding	transformations
• A classical digital computer transforms digital data by

following a program, i.e. a sequence of commands that
describes the trasformations to be applied to data in order to
reach results.

• A program can be written using variouse Hi-Level
programming languages, i.e. language for humans, eg. ADA, C,
C++, Perl, Python, Java, Pascal, Basic.

• Computers, at hardware level, understand only a very trivial
set of commands, the Assembly, a Low-Level programming
language, a language for CPUs.

Hi-Level	languages
BASIC:
10 INPUT "Your name?: ", NAME$
20 PRINT "Hello "; NAME$

C:
#include <stdio.h>
char * name[100];
int main() {

printf("Your name?: ");
scanf("%s",name);
printf("Hello %s\n", name);
return 0;
}

Python:
name=input("Your name?: ")
print("Hello",name)

Java:
package stringvariables ;
import java.util.Scanner;
public class StringVariables {

Scanner user_input = new Scanner(System.in);
String name;
System.out.print("Your name?");
name = user_input.next();
System.out.print("Hello "+name);
}

Assembly

https://www.researchgate.net/figure/Assembly-instructions-of-an-x86-example-optimizing-frequently-executed-pieces-of-code_fig2_3881320

instruction in memory used by CPU instruction transliterated for humans

data

program

result

Use	computers?	Start	problems!
https://www.youtube.com/watch?v=tiq6v39YliQ

• Data management
• Portability

• Code maintenance
• Bugfix
• Improvement

• speed?
• COST!

READABILITY

Develope	Code:	a	job	for	teams
• Code should (must?) be:
• readable: projects pass thorugh many hands and may

live, from change to change, for many years
• easy to develope:
• easy syntax à fast learning
• not error-prone: syntax should aid to avoid errors i.e. a good

programming style
• with a lot of already made wheels: a wide library

collection of good functions aid to build up good code
rapidly (dont reinvent the wheel)
• Cool: a large connected community of geeks that

codes with your programming language probably have
already solved all of your possible problems.

A	troubled	kid:	Speed
• Speed generally conflicts with code maintenance.

Fast codes require the full control the flow of the
instructions in order to obtain hi speed of execution…

but (usually):
• is coded using a "raw" programming language (eg. C,C++) thus it

result often unreadable.
• it don't use "abstractions" for implementing algorithm and

managing data thus it became easy to make mistakes and bugs
• libraries are implemented from scratch in order to optimize code

or remove unused part of code, thus "new code, new bugs".

"Don't run if there is not needs"

Interpreter	vs	Compiler
• The process of translate from HI to Low Level can be made in

two way: translate the program with a compiler o execute the
program with an interpreter

• Compilers:
• take a lot of time for compile phase but the result, the executable,

run fast on CPU.
• Any new release of the code have to be compiled again
• there no easy ways to run the code step by step for test (you have

to use a debugger)
• Interpreters:
• designed for interactive mode: easy to debug code
• code is executed by an agent, not directly by CPU

• easy to port to new kind of computer
• Not so fast: each line have to be translated anytime is executed

Speed
C

char* aword=malloc(typeof(char)*10);
scanf("%s",aword);
for (i=0;strlen(aword);i++){

printf("%c\n",aword[i]);
}
free(aword);

+ fast: compiled for the running CPU
+ small binary
+ no need other piece of code
- unreadable
- memory mgmt is our duty
- easy to make mistakes on syntax

python

aword=input()
for c in aword:

print(c)

+easy to undestand
+easy to find errors
+memory mgmt is delagated to system
+portable: code is not executed directly
by CPU but its translated by the
interpreter
-not so fast: it is interpreted
-sometime its fuzzy: managing object
requires a background process that sink
some cpu time in a unpredictable time
-require a software to be executed:
python interpreter

Speed	constrains
• Speed depends mainly:
• data management:

• how objects for data are create and, more important, destroyed.
• how access to data is made respect to the layered cached memory

• CPU parallelism:
• modern CPUs are superscalar: can do many steps at the same time,

concurrently, if the code permits it.
• On python speed depends mainy:
• How many you code is “lined”, i.e. command are coded in a single

statement that avoid for-cycle
• How many your code delegates execution to imported library

Data	management
a	do-it-yourself	view	(C	style)

INPUT
"ABC", 1

A B C

RAM

1. create a word
2. create a number
3. create a X type

4. put "ABC" in the first
word

5. put 1 in the first
number

6. destroy the word
7. destroy the number

word type

number type

X type

1

garbage uncollected
waste memory

W
N

X type (dead)

Data	management
a	data-as-service	view	(Java	style)

INPUT
"ABC", 1

A B C

RAM

1. I need a word W
for "ABC"

2. I need a number
N for 1

1

X type

garbage collection
timed service

Python	spec
• General purpouse language
• Focused on readability
• Interpreted
• Modular
• Dynamic
• Object-oriented
• Portable
• Extensible in C++ & C

Snakify
• Snakify is a platform for e-Learning Python 3
• Connect to https://snakify.org/
• Sign up using

• your @unimi.it email as username (dont use your private email, if
possible)

• a password DIFFERENT from the one used for email
• flag the option "I have a teacher"
• put "massimo.marchi@unimi.it" in the field "Teacher's email"

